Molecular dynamics simulation of reversibly self-assembling shells in solution using trapezoidal particles.

نویسنده

  • D C Rapaport
چکیده

The self-assembly of polyhedral shells, each constructed from 60 trapezoidal particles, is simulated using molecular dynamics. The spatial organization of the component particles in this shell is similar to the capsomer proteins forming the capsid of a T=1 virus. Growth occurs in the presence of an atomistic solvent and, under suitable conditions, achieves a high yield of complete shells. The simulations provide details of the structure and lifetime of the particle clusters that appear as intermediate states along the growth pathway, and the nature of the transitions between them. In certain respects the growth of size-60 shells from trapezoidal particles resembles the growth of icosahedral shells from triangular particles studied previously, with reversible bonding playing a major role in avoiding incorrect assembly, although the details differ due to particle shape and bond organization. The strong preference for maximal bonding exhibited by the triangular particle clusters is also apparent for trapezoidal particles, but this is now confined to early growth and is less pronounced as shells approach completion along a variety of pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics study of T = 3 capsid assembly.

Molecular dynamics simulation is used to model the self-assembly of polyhedral shells containing 180 trapezoidal particles that correspond to the T = 3 virus capsid. Three kinds of particle, differing only slightly in shape, are used to account for the effect of quasi-equivalence. Bond formation between particles is reversible and an explicit atomistic solvent is included. Under suitable condit...

متن کامل

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

Non-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel

The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...

متن کامل

Studies of reversible capsid shell growth.

Results from molecular dynamics simulations of simple, structured particles capable of self-assembling into polyhedral shells are described. The analysis focuses on the growth histories of individual shells in the presence of an explicit solvent and the nature of the events along their growth pathways; the results provide further evidence of the importance of reversibility in the assembly proce...

متن کامل

Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments

Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012